HW 2 (today): 2.2 & slope fields

HW 3 (Wed): 2.1 Integrating Factors

2.3 applications

2.1: Integrating Factors (Linear 1st Order Diff. Eqns)

Recall: We have been solving 1st order equations such as:

$$\frac{dy}{dt} = G(t, y)$$

We call the equation *linear* if G(t, y) is a linear function of y, that is:

Otherwise, we say it is non-linear.

Many important applications we have seen are linear (populations, bank accounts, air resistance, temperature, etc...), so this is an important special case.

Given a 1st order linear ODE, we like to re-arrange it into the form:

$$\frac{dy}{dt} + p(t)y = g(t)$$

Examples:

$$1.\frac{dy}{dt} + ty = t^3$$
 Give $p(t)$ and $g(t)$.

$$p(t) = t$$
$$g(t) = t^3$$

$$2. x \frac{dy}{dx} = \sin(x) - 2y$$
Give $p(x)$ and $g(x)$.

$$x \frac{dy}{dx} + 2y = \sin(x)$$

$$\frac{dy}{dx} + \frac{2}{x}y = \frac{\sin(x)}{x}$$

$$p(x) = \frac{2}{x}$$

$$g(x) = \frac{\sin(x)}{x}$$

Big Observation 1

The form

$$\frac{dy}{dt} + p(t)y$$

looks sort of like the product rule.

Recall: Here is the product rule

$$\frac{d}{dt}(f(t)y) = f(t)\frac{dy}{dt} + f'(t)y$$

Example:

$$\frac{dy}{dt} + 2y = \frac{t}{e^{2t}}$$
so $p(t) = 2$ and $g(t) = \frac{t}{e^{2t}}$

What happens if you multiply both sides by e^{2t} ?

$$e^{2t} \frac{dy}{dt} + 2e^{2t} y = t$$

$$\frac{d}{dt} \left(e^{2t} y \right) = t$$

$$\int \frac{d}{dt} \left(e^{2t} y \right) dt = S + dt$$

$$e^{2t} y = \frac{1}{2} t^2 + C$$

$$y = \frac{1}{2} t^2 + C$$

$$e^{2t} y = \frac{1}{2} t^2 + C$$

You get

$$e^{2t}\frac{dy}{dt} + 2e^{2t}y = t$$

which is

$$\frac{d}{dt}(e^{2t}y) = t$$

Integrating both sides gives

$$e^{2t}y = \frac{1}{2}t^2 + C$$

SO

$$y = \frac{\frac{1}{2}t^2 + C}{e^{2t}}$$

In this example, we call $\mu(t)=e^{2t}$, the integrating factor, which is a function we multiply by so we can reverse the product rule.

Okay, sort of cool, but we were lucky this time, how can we make this work in a more general way?
We need another big observation.

Big Observation 2

If F(t) is any antiderivative of p(t)

$$F(t) = \int p(t)dt$$

then

$$\frac{d}{dt}(e^{F(t)}y) = e^{F(t)}\frac{dy}{dt} + p(t)e^{F(t)}y$$
$$= e^{F(t)}\left(\frac{dy}{dt} + p(t)y\right).$$

So if we multiply by

$$\mu(t) = e^{\int p(t)dt}$$

then we create a situation where we can reverse the product rule.

$$M(t) \frac{dy}{dt} + \mu(t) p(t) y = \mu(t) g(t)$$

$$\frac{d}{dt} \left(\mu(t) y \right) = \mu(t) g(t)$$

$$\mu(t) y = \int_{\mu(t)} \int_{\mu(t)} g(t) dt$$

$$y = \int_{\mu(t)} \int_{\mu(t)} g(t) dt$$

ALWAYS "WORKS"

Integrating Factor Method

Given a linear, 1st order ODE

$$\frac{dy}{dt} = f(t, y)$$

Step 0: Put in form

$$\frac{dy}{dt} + p(t)y = g(t)$$

Step 1: Find
$$F(t) = \int p(t)dt$$

& write/simplify
$$\mu(t) = e^{\int p(t)dt}$$

Step 2: Multiply BOTH sides by $\mu(t)$.

& re-write LHS as product rule.

Step 3: Integrate both sides, and simplify.

Example:
$$\frac{dy}{dt} = \frac{\cos(t)}{t^2} - \frac{2y}{t}$$

Step 0:

$$\frac{dy}{dt} + \frac{2}{t}y = \frac{\cos(t)}{t^2}$$

Step 1:
$$F(t) = \int \frac{2}{t} dt = 2 \ln(t) + C$$

 $\mu(t) = e^{2 \ln(t)} = e^{\ln(t^2)} = t^2$

Step 2:
$$t^2 \frac{dy}{dt} + 2ty = \cos(t)$$

$$\frac{d}{dt}(t^2y) = \cos(t)$$

Step 3:
$$t^2 y = \sin(t) + C$$
$$y = \frac{\sin(t) + C}{t^2}$$

Example:

$$3\frac{dy}{dt} - 6ty - 3e^{t^2} = 0$$

$$\frac{dy}{dt} - 2ty - e^{t^2} = 0$$

$$\frac{dy}{dt} - 2ty = e^{t^2}$$

$$\frac{dy}{dt} - 2ty = e^{t^2}$$

$$g(t) = e^{t^2}$$

$$\frac{\text{[I]}}{\text{[Fadis]}} \int \rho(t) dt = S - 2t dt = -t^2 + C_0$$

$$\frac{\text{[Integrals]}}{\text{[Fadis]}} \frac{1}{\text{[M(t)]}} = e^{-t^2}$$

$$\boxed{\square \text{ multiply}}$$

$$e^{-t^2} \frac{dy}{dt} - 2te^{-t^2}y = e^{-t^2}e^{t^2}$$

$$\frac{d}{dt} \left(e^{-t^2}y\right) = 1$$

$$e^{-t^2}y = t + C$$

$$y = (++c)e^{-t^2}$$

Example:

$$\frac{dy}{dt} = t - 3y$$

$$3y = t$$
 $p(t)=3$, $g(t)=t$
 $A(t)=e^{-1}$
 $A(t)=e^{-1}$

 $e^{3t}y = \int te^{3t}dt$ $e^{3t}y = \frac{1}{3}te^{3t} - \int \frac{1}{3}e^{3t}dt$ $u = t \quad dv = e^{3t}dt$ $du = dt \quad v = \frac{1}{3}e^{3t}$ $e^{3t}y = \frac{1}{3}te^{3t} - \frac{1}{4}e^{3t} + C$ $y = \frac{1}{3}t - \frac{1}{4}t + Ce^{-3t}$

Two Notes:

- Only for linear 1st order ODEs!

Aside:

Again, sometimes a substitution can make it linear.

Example:

$$e^{y} \frac{dy}{dx} - \frac{1}{x} e^{y} = 3x$$
 is not linear Using

$$v = e^{y} \to \frac{dv}{dt} = e^{y} \frac{dy}{dt}$$

Changes it to

$$\frac{dv}{dx} - \frac{1}{x}v = 3x \quad \text{which is linear.}$$

$$M(x) = e^{\int \frac{1}{x} dx} = e^{\ln(x)} = \frac{1}{x}$$

$$\frac{1}{x} \frac{dx}{dx} - \frac{1}{x^2} v = 3$$

- If we can't do the integrals we can still write our answer in terms of integrals.

In which case the convention is to write

$$\int f(t)dt = \int_0^t f(u)du + C$$

(so we can solve for C if needed). See next page for an example. Example:

$$\frac{1}{6}\frac{dy}{dt} + t^2y = \frac{1}{6}$$

$$\frac{dy}{dt} + 6t^{2}y = 1$$

$$P(t) = 6t^{2}, g(t) = 1$$

$$\frac{d}{dt}\left(e^{2t^3}y\right) = e^{2t^3}$$

$$e^{2t^3}y = \int_{-\infty}^{\infty} e^{2t^3} dt$$

$$e^{2t^3}y = \int_0^t e^{2u^3}du + C$$
 $y = e^{-2t^3} \int_0^t e^{2u^3}du + Ce^{-2t^3}$